Паяльная станция своими руками: 3 простых способа изготовления

Паяльная станция своими руками

Пайка электронных плат требует соблюдения определенного уровня температуры для различных деталей, ведь недостаток нагрева приведет к плохому соединению припоя, равно, как и чрезмерный нагрев вызовет преждевременное окисление олова и такое же низкое качество пайки.

Помимо этого на перегретой плате могут отслаиваться дорожки, обугливаться целые участки. Если раньше для работы с мелкими и крупными деталями, лужением относительно большой площади радиолюбители использовали набор из нескольких паяльников, сегодня эта функция решается одной паяльной установкой. Но из-за высокой стоимости такого устройства не все могут позволить себе ее приобретение, поэтому мы расскажем, как собирается паяльная станция своими руками.

Принцип действия и варианты реализации

Принцип работы паяльной станции заключается в способности устройства регулировать температуру нагрева и поддерживать ее в установленных пределах на протяжении всего процесса.

Разумеется, реализация всех вышеперечисленных функций задача не из простых, поэтому изготовление полноценного аналога под силу опытным электрикам, имеющим должное оборудование и опыт сборки электронных схем, изготовления печатных плат.

Поэтому сначала мы разберем относительно простые варианты изготовления, регулировка температуры в которых осуществляется вручную. Но и таких паяльных станций вполне достаточно, чтобы выполнить качественную пайку деталей, ориентируясь только по внешним признакам работы жала.

Способ №1. Контактная паяльная станция

Для такой паяльной станции вам понадобиться относительно классический паяльник мощностью хотя бы 80 – 100Вт, регулятор мощности (в данном примере мы будем использовать диммер), диодный мост, соединительные провода. Такая паяльная станция будет работать без обратной связи по температуре жала паяльника, поэтому результативность воздействия на припой придется определять опытным путем.

Рис. 1: схема изготовления простейшей станции

Так как в домашней сети напряжение может быть значительно ниже 220В, в схеме паяльной станции будет использоваться диодный мост.

Процесс изготовления состоит из следующих этапов:

  • Соберите из четырех диодов мост или возьмите готовую сборку с параметрами работы с 220 В на 300 В;
  • Отрежьте питающий шнур на расстоянии 10 – 15 см от ручки, запас нужен для подключения к паяльной станции;
  • Зачистите выводы проводов как возле паяльника, так и на шнуре, его также будем использовать для подключения;
  • Подключите одну из жил шнура питания к диодному мосту через диммер, а вторую напрямую;
  • Подсоедините выводы диодного моста к жилам паяльника, лучше использовать клеммное соединение, болтовое или пайку;
  • Места электрических соединений заизолируйте для предотвращения поражения электрическим током при работе паяльной станцией;
  • Установите мост и светорегулятор на диэлектрическое основание.

Простейшая паяльная станция готова к использованию, достаточно включить ее в розетку и повернуть ручку в нужное положение. Принцип работы с ней схож с прибором для выжигания по дереву. Работая с крупными элементами, регулятор мощности устанавливается в максимальное положение. С мелкими, выводится в половинное значение, следует отметить, что конструкция регулятора температуры на основе диммера изменяет напряжение питания от 220 до 0В, а вам ограничивать его меньше половины смысла не имеет.

Способ №2. Бесконтактная паяльная станция

Как показывает практика, далеко не всегда нагревом жала можно воздействовать на любые элементы платы, к примеру, к тем же smd деталям крайне трудно подобраться. В таких ситуациях используется паяльный фен, направляющий поток горячего воздуха на ножки.

Несмотря на схожесть, переделать обычное устройство для сушки волос в инфракрасную станцию не получится, так как рабочая температура должна достигать 500 — 800ºС. Для сборки такой паяльной станции вам понадобится компрессор для подачи воздуха, нагревательный элемент, корпус для элементов управления, сопло, понижающий трансформатор, выпрямитель, блок управления скоростью подачи воздуха.

Принципиальная схема такой паяльной станции приведена на рисунке ниже:

Рис. 2: электрическая схема термофена

Принцип действия паяльной станции основан на воздействии инфракрасного излучения от нагревательного элемента непосредственно в область пайки. Компрессор подает воздух от нагревателя через сужающееся сопло, создавая эффект турбины, производительность насоса желательно обеспечить в пределах от 20 до 30 л в минуту.

При изготовлении инфракрасной станции существует два способа для ее выполнения — ручная модель или стационарная. Первый вариант подходит в тех ситуациях, когда корпус ИК паяльной предвидится относительно небольших размеров и будет удобно помещаться в руке. Второй способ подойдет для крупногабаритных приспособлений, в которых станция установлена неподвижно, а заготовка перемещается под соплом.

Рассмотрим такой пример изготовления паяльной станции бесконтактного типа:

  • Намотайте нагревательную спираль из нихромовой проволоки, в данном случае используется диаметром 0,8мм. Можете взять и другой вариант, к примеру, от электрической плиты. Рис. 3: намотайте нагревательный элемент
  • Для намотки используйте жесткий каркас, укладывайте витки вплотную, но не делайте нахлестов и следите за тем, чтобы не закоротить намотку. Чем меньше диаметр проволоки у вас получится, тем эффективнее будет идти нагрев, достаточно будет спирали с наружным диаметром 8 – 10 мм.
  • В данном примере изготавливаются несколько спиралей, соединяемых параллельно для повышения температуры нагрева.
  • Установите полученную спираль на цилиндрический каркас из негорючего материала.

Рисунок 4: поместите спирали на диэлектрический элемент

Предварительно удалите с каркаса все лишнее но если он уже готов, можете сразу осуществлять намотку.

  • Изготовьте металлический стакан для нагревательного элемента, в этом примере изготовления паяльной станции мы сделаем его из корпуса пальчиковой батарейки.
  • Из куска телескопической антенны от радиоприемника сделайте сопло, один край которого нужно расплескать и надеть на шайбу. Рис. 5. Наденьте шайбу
  • Прикрутите шайбу сопла к стакану из батарейки при помощи соразмерных болтов. Рис. 6: прикрутите сопло к стакану
  • Поместите внутрь стакана между спиралью и стенками термоизоляционный материал, чтобы предотвратить перегревание наружных деталей.
  • Соберите диодный мост из четырех полупроводниковых элементов, если под рукой уже есть готовая сборка, можете использовать и ее.
  • Изготовьте блок питания из понижающего трансформатора и выпрямительного агрегата, ваша задача получить на выходе низкое напряжение для снижения вероятности поражения электротоком. В рассматриваемом примере получается около 10 – 15В, мощность трансформатора составляет 150Вт. Аналогичная модель может браться с готового оборудования.
  • Корпус для паяльной станции мы изготовим из обычной пластиковой бутылки. В данном примере нам нужен прозрачный пластик, так как в нем легче подключать блок питания, нагнетатель воздуха и плату управления. Рис. 7. соедините все элементы в корпусе
  • Подключите куллер и нагревательную спираль к выводам блока питания, подсоедините регулятор напряжения. Рис. 8. установите кулер

Регулировка мощности теплового потока может осуществляться либо по скорости подачи воздуха, либо по уровню напряжения, подаваемого на нагреватель.

  • Подключите шнур питания к выводам трансформатора – паяльная станция готова к использованию. Рис. 9: паяльная станция готова

Способ №3. Автоматическая паяльная станция на базе Ардуино

Такая паяльная станция собирается на базе микроконтроллера Arduino, который выполняет роль логического элемента, обрабатывающего данные от индикатора температуры и регулирующего мощность нагрева жала. Отличительной особенностью такого устройства является полная автоматизация контроля за температурой – вам достаточно задать ее и дождаться нагревания. Пример схемы для сборки приведен на рисунке ниже:

Рис. 10. схема паяльной станции на базе ардуино

Чтобы собрать такую станцию вам понадобится:

  • сама плата Ардуино для управления работой паяльной станции;
  • цифровое табло для отображения температуры нагрева;
  • микросхему для программирования паяльной станции;
  • транзистор, стабилизатор и кнопки, магазин резисторов и емкостных элементов.

Для сборки такой паяльной станции воспользуйтесь приведенной схемой, в качестве нагревательного элемента будет выступать жало обычного паяльника с датчиком температуры, которые подключаются к собранной схеме.

К недостаткам такого устройства следует отнести его сложность, из-за чего начинающие радиолюбители могут попросту не собрать рабочую версию с первого раза. Также для пайки используемых в автоматической станции элементов вам понадобиться специальный паяльник и предварительные навыки работы с ним, чтобы не испортить детали.

Видео по теме



Создание инфракрасной паяльной станции в домашних условиях


Многие радиолюбители не могут подобрать подходящий инструмент для ежедневной пайки различных микросхем и компонентов. Паяльная станция своими руками для таких умельцев – это один из лучших вариантов решения всех проблем.

Больше не нужно выбирать из множества несовершенных фабричных устройств, достаточно найти подходящие комплектующие, потратить немного времени и сделать идеальное устройство, удовлетворяющее все требования, своими руками.

Принцип действия и варианты реализации

Принцип работы паяльной станции заключается в способности устройства регулировать температуру нагрева и поддерживать ее в установленных пределах на протяжении всего процесса.

Разумеется, реализация всех вышеперечисленных функций задача не из простых, поэтому изготовление полноценного аналога под силу опытным электрикам, имеющим должное оборудование и опыт сборки электронных схем, изготовления печатных плат.

Поэтому сначала мы разберем относительно простые варианты изготовления, регулировка температуры в которых осуществляется вручную. Но и таких паяльных станций вполне достаточно, чтобы выполнить качественную пайку деталей, ориентируясь только по внешним признакам работы жала.

Виды ИПС

По типу инфракрасного излучателя различают два вида ИПС:

  1. Керамические;
  2. Кварцевые.

Керамические

Термовоздушная паяльная станция

Примером керамической инфракрасной паяльной станции является модель Achi ir6000. Станция обладает массой достоинств. Она зарекомендовала себя как надёжное, прочное и долговечное оборудование. Рабочая температура в зоне пайки достигается в течение 10 минут. В станциях такого типа используется сплошной плоский или полый керамический излучатель.

Кварцевые

В отличие от керамического паяльника, кварцевая станция достигает максимального нагрева за 30 секунд. Кварцевые станции очень чувствительны к частым циклам включения – выключения.

Внимание! Если специфика паяльного режима требует в течение короткого периода нескольких отключений оборудования, то лучше пользоваться керамической паяльной станцией.

Способ №1. Контактная паяльная станция

Для такой паяльной станции вам понадобиться относительно классический паяльник мощностью хотя бы 80 – 100Вт, регулятор мощности (в данном примере мы будем использовать диммер), диодный мост, соединительные провода. Такая паяльная станция будет работать без обратной связи по температуре жала паяльника, поэтому результативность воздействия на припой придется определять опытным путем.


Рис. 1: схема изготовления простейшей станции

Так как в домашней сети напряжение может быть значительно ниже 220В, в схеме паяльной станции будет использоваться диодный мост.

Процесс изготовления состоит из следующих этапов:

  • Соберите из четырех диодов мост или возьмите готовую сборку с параметрами работы с 220 В на 300 В;
  • Отрежьте питающий шнур на расстоянии 10 – 15 см от ручки, запас нужен для подключения к паяльной станции;
  • Зачистите выводы проводов как возле паяльника, так и на шнуре, его также будем использовать для подключения;
  • Подключите одну из жил шнура питания к диодному мосту через диммер, а вторую напрямую;
  • Подсоедините выводы диодного моста к жилам паяльника, лучше использовать клеммное соединение, болтовое или пайку;
  • Места электрических соединений заизолируйте для предотвращения поражения электрическим током при работе паяльной станцией;
  • Установите мост и светорегулятор на диэлектрическое основание.

Простейшая паяльная станция готова к использованию, достаточно включить ее в розетку и повернуть ручку в нужное положение. Принцип работы с ней схож с прибором для выжигания по дереву. Работая с крупными элементами, регулятор мощности устанавливается в максимальное положение. С мелкими, выводится в половинное значение, следует отметить, что конструкция регулятора температуры на основе диммера изменяет напряжение питания от 220 до 0В, а вам ограничивать его меньше половины смысла не имеет.

Способ №2. Бесконтактная паяльная станция

Как показывает практика, далеко не всегда нагревом жала можно воздействовать на любые элементы платы, к примеру, к тем же smd деталям крайне трудно подобраться. В таких ситуациях используется паяльный фен, направляющий поток горячего воздуха на ножки.

Несмотря на схожесть, переделать обычное устройство для сушки волос в инфракрасную станцию не получится, так как рабочая температура должна достигать 500 — 800ºС. Для сборки такой паяльной станции вам понадобится компрессор для подачи воздуха, нагревательный элемент, корпус для элементов управления, сопло, понижающий трансформатор, выпрямитель, блок управления скоростью подачи воздуха.

Принципиальная схема такой паяльной станции приведена на рисунке ниже:


Рис. 2: электрическая схема термофена

Принцип действия паяльной станции основан на воздействии инфракрасного излучения от нагревательного элемента непосредственно в область пайки. Компрессор подает воздух от нагревателя через сужающееся сопло, создавая эффект турбины, производительность насоса желательно обеспечить в пределах от 20 до 30 л в минуту.

При изготовлении инфракрасной станции существует два способа для ее выполнения — ручная модель или стационарная. Первый вариант подходит в тех ситуациях, когда корпус ИК паяльной предвидится относительно небольших размеров и будет удобно помещаться в руке. Второй способ подойдет для крупногабаритных приспособлений, в которых станция установлена неподвижно, а заготовка перемещается под соплом.

Рассмотрим такой пример изготовления паяльной станции бесконтактного типа:

    Намотайте нагревательную спираль из нихромовой проволоки, в данном случае используется диаметром 0,8мм. Можете взять и другой вариант, к примеру, от электрической плиты.


Рис. 3: намотайте нагревательный элемент

  • Для намотки используйте жесткий каркас, укладывайте витки вплотную, но не делайте нахлестов и следите за тем, чтобы не закоротить намотку. Чем меньше диаметр проволоки у вас получится, тем эффективнее будет идти нагрев, достаточно будет спирали с наружным диаметром 8 – 10 мм.
  • В данном примере изготавливаются несколько спиралей, соединяемых параллельно для повышения температуры нагрева.
  • Установите полученную спираль на цилиндрический каркас из негорючего материала.

  • Рисунок 4: поместите спирали на диэлектрический элемент
    Предварительно удалите с каркаса все лишнее но если он уже готов, можете сразу осуществлять намотку.

    • Изготовьте металлический стакан для нагревательного элемента, в этом примере изготовления паяльной станции мы сделаем его из корпуса пальчиковой батарейки.
    • Из куска телескопической антенны от радиоприемника сделайте сопло, один край которого нужно расплескать и надеть на шайбу.


    Рис. 5. Наденьте шайбу

    Прикрутите шайбу сопла к стакану из батарейки при помощи соразмерных болтов.


    Рис. 6: прикрутите сопло к стакану

  • Поместите внутрь стакана между спиралью и стенками термоизоляционный материал, чтобы предотвратить перегревание наружных деталей.
  • Соберите диодный мост из четырех полупроводниковых элементов, если под рукой уже есть готовая сборка, можете использовать и ее.
  • Изготовьте блок питания из понижающего трансформатора и выпрямительного агрегата, ваша задача получить на выходе низкое напряжение для снижения вероятности поражения электротоком. В рассматриваемом примере получается около 10 – 15В, мощность трансформатора составляет 150Вт. Аналогичная модель может браться с готового оборудования.
  • Корпус для паяльной станции мы изготовим из обычной пластиковой бутылки. В данном примере нам нужен прозрачный пластик, так как в нем легче подключать блок питания, нагнетатель воздуха и плату управления.


    Рис. 7. соедините все элементы в корпусе

    Подключите куллер и нагревательную спираль к выводам блока питания, подсоедините регулятор напряжения.


    Рис. 8. установите кулер

    Регулировка мощности теплового потока может осуществляться либо по скорости подачи воздуха, либо по уровню напряжения, подаваемого на нагреватель.

    • Подключите шнур питания к выводам трансформатора – паяльная станция готова к использованию.


    Рис. 9: паяльная станция готова

    Инфракрасная

    Инфракрасную станцию также вполне реально изготовить самостоятельно. Для этой цели понадобится:

    • паяльник;
    • блок питания от ПК;
    • автомобильный прикуриватель.

    Блок питания можно использовать старый. Понадобится только одна рабочая линия с напряжением в 12 вольт. Особой мощности не требуется. От паяльника понадобится только деревянная ручка. Ее можно использовать и от любого другого прибора или изготовить самостоятельно. Первым делом необходимо разобрать прикуриватель, чтобы добраться до нагревательного элемента, который находится внутри. На фото показано, как он выглядит.

    Следующая задача заключается в том, чтобы закрепить ручку от прикуривателя на рукоятке от паяльника. Для этого можно воспользоваться клеем. Далее необходимо просверлить отверстие в ручке от прикуривателя, чтобы через отверстие можно было подвести питающие провода. Когда провода подведены, можно собрать модуль прикуривателя с керамической проставкой, как показано на фото ниже.

    Закрепить всю конструкцию на рукоятке можно с помощью дополнительной металлической пластины. Когда все готов провода подключаются к блоку питания на вывод в 12 вольт. Готовый вариант мини-станции показан ниже на фото.

    Станция получается компактной, поэтому ее легко транспортировать и можно запитать от любого источника, который способен выдать 12 вольт постоянного тока. Это может быть даже аккумулятор, поэтому станция получилась полностью автономной. Если собрать небольшой блок из литий-ионных аккумуляторов 18650 с преобразователем на 12 вольт и установить контроллер зарядки, то цены такой станции не будет.

    Нагрев мини-станции происходит практически моментально, а максимальная температура может превышать 400 градусов. Выпайке поддаются небольшие элементы, например, конденсаторы и транзисторы, как видно на фото ниже.

    Расстояние до платы при пайке должно быть не меньше 10 мм. Кроме миниатюрных SMD элементов, станция с легкостью справляется и с микросхемами в корпусах SOEC. На фото ниже видно прямое тому доказательство.

    Также без особых сложностей можно выпаять и более крупные компоненты. Станцию можно немного доработать, чтобы получился удобный вариант для работы. Одним из модулей, который легко использовать дополнительно является диммер, как видно на фото ниже.

    Его предназначением является возможность регулировка мощности паяльной станции. В качестве источника питания можно использовать не блок питания от ПК, а блок питания для светодиодной ленты, как видно на фото ниже. Его легко приобрести в любом магазине электротоваров. Общая мощность станции составляет примерно 50 Вт, сила тока, которая потребуется для ее работы достигает 6 ампер. Это стоит учитывать при выборе блока питания.

    Минусом такой паяльной стации можно считать отсутствие контакта с элементом, который подвергается пайке. Из-за этого нет возможности убрать излишек припоя, а также невозможно поправить деталь, если она была спозициоинрована со смещением, а припой еще не остыл. Желательно предусмотреть отдельную кнопку включения на рукоятке, которая предотвратит перегревание прикуривателя. Во время работы такой станцией, необходимо держать манипулятор под углом в 90 градусов к элементу, который паяется. Это даст возможность воздействовать на него всей областью нагревателя равномерно.

    Дополнительно для успешной пайки мелких элементов понадобится набор пинцетов. Их губки обязательно должны быть острыми, чтобы было легче захватывать миниатюрные компоненты. Кроме того, не обойтись без устройства, которое называется «третья рука». Есть множество его вариаций, но основное предназначение везде одинаковое. Оно заключается в удержании припаиваемых проводов или целых микросхем. Чтобы было легче рассмотреть мелкие компоненты, необходимо хорошее увеличительное стекло или микроскоп. Неотъемлемой частью инструментария мастера является хорошее освещение. Желательно, если оно будет основано на светодиодах, которые не имеют мерцания при работе. Во время пайки с использованием станции не обойтись без флюса. Это специальный раствор, который улучшает адгезию и очищает металл для пайки. Вариант инфракрасной паяльной станции с нижним подогревом также можно собрать самостоятельно. Об этом есть видео ниже.

    Способ №3. Автоматическая паяльная станция на базе Ардуино

    Такая паяльная станция собирается на базе микроконтроллера Arduino, который выполняет роль логического элемента, обрабатывающего данные от индикатора температуры и регулирующего мощность нагрева жала. Отличительной особенностью такого устройства является полная автоматизация контроля за температурой – вам достаточно задать ее и дождаться нагревания. Пример схемы для сборки приведен на рисунке ниже:


    Рис. 10. схема паяльной станции на базе ардуино

    Чтобы собрать такую станцию вам понадобится:

    • сама плата Ардуино для управления работой паяльной станции;
    • цифровое табло для отображения температуры нагрева;
    • микросхему для программирования паяльной станции;
    • транзистор, стабилизатор и кнопки, магазин резисторов и емкостных элементов.

    Для сборки такой паяльной станции воспользуйтесь приведенной схемой, в качестве нагревательного элемента будет выступать жало обычного паяльника с датчиком температуры, которые подключаются к собранной схеме.

    К недостаткам такого устройства следует отнести его сложность, из-за чего начинающие радиолюбители могут попросту не собрать рабочую версию с первого раза. Также для пайки используемых в автоматической станции элементов вам понадобиться специальный паяльник и предварительные навыки работы с ним, чтобы не испортить детали.

    Работа на практике

    Перед началом работы важно правильно настроить ИК паяльную станцию.

    Настройка

    После того, как закрепили печатную плату на термостоле и подвели ИК излучатель к микропроцессору, переходят к настройке работы станции. Делают это с помощью клавиш интерфейсов термоконтроллеров верхнего и нижнего нагревателей.

    На дисплее контроллёра нижнего нагрева вверху отражается текущая температура. Кнопками на нижней строке задают конечную величину степени прогрева печатной платы.

    Программируемый контроллер верхнего нагрева располагает 10-ю опциями (термопрофилями). Термопрофиль отражает зависимость температуры от времени. То есть прогрев можно запрограммировать ступенчато. Каждый шаг задаёт определённое время, в течение которого температура не меняется.

    Сложность в работе

    Инфракрасные паяльные станции серийного производства просты в работе и понятны в управлении. Сложности в работе станции могут возникнуть по причине несоответствия реальных характеристик станции данным в сопроводительной документации. За это отвечает изготовитель оборудования согласно гарантийным обязательствам.

    Для людей, занимающихся ремонтом современных электронных устройств в домашних условиях, самодельная инфракрасная паяльная станция – первая необходимость. Приобретать профессиональное оборудование имеет смысл для мастерских, где есть большие объёмы ремонтных работ.

    Как сделать паяльную станцию своими руками?

    1. Инструменты и материалы
    2. Способы изготовления станций
    3. Техника безопасности
    4. Рекомендации

    Пайка обеспечивает высокую механическую прочность соединения и надёжный электрический контакт. Обычно для пайки пользуются ручным инструментом «паяльник». Он прост и дёшев, но в обращении требует своеобразных навыков. Главный недостаток примитивного паяльника – то, что с его помощью непросто поддерживать желаемую температуру пайки.

    От точности поддержания температуры зависят прочность и качество паяного соединения. Для решения проблемы применяются так называемые «паяльные станции». Это более сложные приборы, позволяющие не только точно поддерживать температуру, но и производить дозированный нагрев отдельных частей. И такой прибор можно сделать своими руками!

    Инструменты и материалы

    Паяльная станция является не слишком сложным, но всё-таки радиоэлектронным устройством. Для её изготовления своими руками понадобятся стандартные приборы и материалы:

    • электротехнические провода;
    • изолента;
    • инструменты для обработки пластмассы;
    • паяльник с комплектом принадлежностей.

    Да, для изготовления паяльной станции поначалу нужен любой паяльник. Зато после того как станция будет собрана и отлажена, паять станет намного удобнее. Самое главное: качество работы заметно улучшится.

    Способы изготовления станций

    Задавшись целью собрать паяльную станцию, мастер обычно использует то, что оказалось под рукой. Так как ключевым элементом является собственно паяльник, обычно приобретают готовое изделие. Хорошая паяльная станция может быть собрана своими руками на базе широко распространённых и недорогих паяльников стандарта «Т12».

    Простейший блок управления содержит устройство, измеряющее температуру жала паяльника. Требуемый режим устанавливается простым поворотом ручки терморегулятора. «Аналоговая» станция очень проста и компактна.

    Обычно регулятор делают по простейшей схеме с симисторным управлением. Эти схемы широко известны и отличаются крайней дешевизной и простотой. Но с их помощью нельзя точно установить температуру. Хорошие схемы регуляторов получаются на основе аналоговых компараторов. При этом управление нагрузкой обычно осуществляется широтно-импульсной модуляцией.

    Необычную схему регулятора можно сделать из старого компьютерного блока питания. Импульсные источники питания уже содержат аналоговый компаратор (он используется для поддержания заданного напряжения на выходе). Можно найти компаратору нетрадиционное применение, собрав аналоговую паяльную станцию.

    Очень интересно своими руками сделать «цифровую» станцию. Такой аппарат обычно строится на микроконтроллере с энкодером. Для индикации текущего режима работы и удобного задания параметров служит цифровой индикатор.

    Так как цифровая станция обладает многочисленными регулировками и возможностями, для ввода информации используется кнопочная клавиатура.

    Для навигации по экранному меню используется круглая рукоятка, которую можно свободно вращать в любом направлении на неограниченное число оборотов. При этом меняется вид экрана и можно выбрать нужный пункт меню. Иногда такую рукоятку называют «транскодер», но это неправильный термин, правильно «энкодер».

    Несложным и интересным является сборка паяльной станции из готовых китайских модулей. Например, можно купить отдельно пару паяльников хорошего качества, отдельно приобрести блок питания и отдельно собрать модуль управления из готовых, уже настроенных блоков.

    Неотъемлемым элементом паяльной станции является термометр. Обычно он спрятан в паяльнике или фене и служит лишь для автоматической регулировки. Но хорошей идеей является вывести термометр на индикатор паяльной станции. Это позволит быстро оценить реальную температуру в точке монтажа.

    Важным классом паяльных станций являются «приборы с нижним подогревом». Такой аппарат производит дозированный нагрев определённой области печатной платы, которая закреплена на раме паяльной станции.

    Нагрев бесконтактный, с помощью ИК-излучения. Это значительно упрощает пайку обычным паяльником, поскольку не приходится ждать, пока жало прогреет всю область пайки.

    В качестве источников питания используют любые блоки, оказавшиеся доступными. Многие китайские модули позволяют использовать широкий диапазон напряжений, что облегчает выбор блока питания. Так, питание паяльной станции с импульсным источником можно осуществлять даже из автомобильного прикуривателя.

    Контактная

    Название данного класса паяльных станций ясно указывает на то, что разогрев места пайки производится прямым приложением (физическим контактом) паяльного жала. Несмотря на то что внешне такой инструмент выглядит как обычный паяльник, контактная паяльная станция имеет важные отличия от простого электроинструмента.

    В первую очередь, паяльная станция обеспечивает поддержание стабильной заданной температуры в точке пайки. Это возможно благодаря тому, что нагревательный элемент паяльника также содержит датчик температуры. Даже самая простая и бюджетная станция контактного типа значительно облегчает работу.

    Самодельную паяльную станцию можно собрать в любом подходящем корпусе. Это может быть самодельный ящик или корпус старого прибора.

    Очень необычно выглядит станция в корпусе старой автомагнитолы.

    В качестве паяльника лучше всего взять готовый паяльник, рассчитанный на установку жал стандарта «Т12». Такие паяльники недороги, паяльные жала выпускаются в очень широком ассортименте. Хорошей идеей будет приобрести сразу несколько паяльников, это позволит быстро менять инструмент при работе.

    Важно определиться, какой тип датчика температуры применяется в вашем экземпляре паяльника. Массово встречаются два типа:

    • термосопротивление;
    • термопара.

    От типа датчика зависит, какой именно блок управления надо купить. Если датчик будет неправильного типа, блок управления не сможет поддерживать заданную температуру. Электропитание большинства паяльных станций стандартно и осуществляется постоянным током 24 В. Для изготовления самоделки вполне подойдёт блок питания ноутбука — его напряжения 19 В обычно вполне достаточно.

    Бесконтактная

    Под «бесконтактными станциями» подразумеваются инструменты, которые позволяют нагревать место паяного соединения без физического контакта с нагревателем. Наиболее распространёнными видами инструмента для бесконтактного нагрева являются термофены. Устроены они примерно так же, как привычные фены для волос. Важным отличием является наличие комплекта сменных насадок. Это позволяет точно дозировать и направлять поток раскалённого воздуха.

    Фены в составе паяльных станций обязательно имеют датчик температуры. Это позволяет с помощью автоматики станции точно поддерживать заданную температуру воздуха.

    Обязательным элементом конструкции паяльного фена является возможность регулировки силы воздушного потока. Это требуется для установления оптимального напора воздуха. Слишком сильный поток может попросту сдувать детали. Слишком слабый не обеспечит должного нагрева.

    В профессиональной работе обычно применяют термофены компрессорного типа. Воздушный насос у них расположен в корпусе паяльной станции. Такие аппараты удобны, но громоздки и дороги. Для изготовления самодельной бесконтактной станции лучше купить недорогой паяльный фен вентиляторного типа. Модули управления также доступны и дёшевы, а электричество можно получить от блока питания для ноутбука.

    Другой разновидностью бесконтактных паяльных станций являются устройства инфракрасного нагрева. Такие станции незаменимы при пайке многослойных печатных плат. Важная роль инфракрасного нагревателя — общий подогрев зоны пайки. При правильном нагреве зоны облегчается дальнейшая работа с обычным паяльником контактного типа.

    Сегодня доступны готовые модули инфракрасного нагрева, специально разработанные для самодельного изготовления паяльной станции.

    Но энтузиасты делают нагреватели бесконтактных станций даже из старых утюгов и мощных галогенных ламп.

    Автоматическая

    Все паяльные станции позволяют автоматически поддерживать заданную температуру в точке пайки. Тем не менее зачастую выделяют особый класс «автоматических станций». Автоматическая паяльная станция имеет широкие возможности по полностью автоматизированному поддержанию не просто заданной температуры. Такой аппарат может по заданной программе изменять температуру нагреваемой области в соответствии с одним из нескольких запрограммированных «термопрофилей».

    Это позволяет выполнять автоматизированную пайку деталей с применением «паяльной пасты» в строгом соответствии с рекомендациями производителей радиодеталей. Автоматическую паяльную станцию можно сделать в виде «паяльной печки». В качестве основы подойдёт недорогая кухонная печь небольшого объёма. Для точного контроля температуры внутри печи монтируются датчики (обычно используют термопары).

    Стандартные покупные модули управления с дисплеями позволяют удобным образом задавать температуру и даже термопрофиль.

    В результате получим вполне профессиональный аппарат. Заводские аналоги такой автоматической паяльной станции не только дороги, но и дефицитны. Термопечь, изготовленная своими руками, не только поможет при пайке, но и порадует кулинаров тем, что позволит очень точно выдерживать нужную температуру при готовке.

    Техника безопасности

    При работе с любым оборудованием для пайки всегда следует соблюдать технику безопасности при производстве паяльных работ. Факторами риска при пайке являются высокая температура и ядовитые испарения. Припои широкого применения плавятся при температуре от 250 до 430°С. Если не соблюдать осторожность, можно получить тяжёлые ожоги. Если используется фен, необходимо следить, чтобы поток раскалённого воздуха не был направлен на легкоплавкие или легковоспламеняющиеся предметы.

    Несмотря на то что в современной электронике повсеместно применяются припои с пониженным содержанием свинца, при пайке всё равно выделяются ядовитые испарения.

    Кроме паров припоя, вредными являются также пары флюсов.

    Следует следить за качеством вентиляции (а лучше всего работать под вытяжкой). Не следует также забывать, что паяльная станция является электроприбором, который питается от бытовой сети 220 В. Соблюдайте общепринятые правила электробезопасности.

    Рекомендации

    Паяльная станция значительно облегчает работу радиомонтажника, поэтому можно смело рекомендовать её применение при любых видах работ. С помощью термофена удобно производить демонтаж деталей. Паяльный агрегат с нижним подогревом просто незаменим при ремонте сложной аппаратуры.

    Современный рынок электронных компонентов и полуфабрикатов вполне позволяет сделать паяльную станцию своими руками. Для начала вполне достаточно собрать из покупных заготовок простой прибор с паяльником контактного типа. Вопреки распространённому мнению, что проще собрать в одном агрегате паяльный комплекс из фена и контроллера паяльников, лучше всё-таки сделать паяльную станцию с феном в виде отдельного аппарата.

    Сборка паяльного аппарата в виде отдельных приборов позволит рационально распределить материальные затраты. Кроме того, отдельные приборы можно разместить на столе более удобным образом. В случае поломки мастер не лишится всех инструментов разом.

    О том, как сделать паяльную станцию своими руками, смотрите далее.

    Самодельная паяльная станция 5 в 1

    Паяльная станция построена на картриджах Hakko T12. Имеет два паяльника по 70 Ватт, вытяжку дымоуловитель, блоки питания для внешних потребителей. Бюджет составил около 10-15$.

    Начало эпопеи было несколько месяцев назад когда пришло купленное на пробу жало Hakko T12-KU. Собранный для пробы паяльник “паяльник на жале Т12” оказался вполне удобным, также сами картридж жала порадовали своей работой. Было заказано еще одно более массивное жало, и я решил сделать законченную паяльную станцию.

    Функции паяльной станции:

    Два паяльника по 70вт управляемых по отдельным каналам. При выпайке деталей, часто удобней пользоваться двумя паяльниками одновременно. Да и при монтаже не надо терять время на смену жала. Плюс в моей конструкции паяльника замена жал не предусмотрена, для тех кто хочет иметь сменные жала в качестве одного из паяльников нужно поставить покупную ручку.

    Вытяжка с фильтром. Дышать флюсом и припоем особо не хочется и лишнего места на столе, как правило нет, а тут одним блоком заменил два.

    Блок питания 24в с отдельным выключателем, можно подключить дрель или других потребителей. Дополнительно также экономится место, поскольку не надо держать блок питания для дрели или постоянно перенастраивать лабораторный блок питания.

    Блок питания 5в, два разъема USB, для питания самих устройств. Я последнее время на все платы с питанием от 5в распаиваю в качестве питания мини USB разъемы или для совсем мелких плат кидаю шнурок с USB разъемом на конце.

    Warning

    Сначала несколько предупреждений.

    Первое.

    В случае отсутствия качественной земли крайне не рекомендую использовать для питания паяльников блок построенный на основе компьютерного блока питания. Т.е. не желательно их использовать в старых домах где не проведена централизованно шина заземления. Использовать в качестве заземления трубы центрального отопления также нельзя поскольку сейчас массово в квартирах заменяются трубы на пластиковые и нельзя быть уверенным в электрическом соединении батареи с землей.

    Если вы предполагаете возможность использования паяльной станции при отсутствии качественного заземления, то следует блок питания строить на основе классического трансформатора. (Схемы регуляторов температуры не требуют стабилизированного источника питания, единственное желательно, что бы напряжение лежало в пределах от 19 до 24 в, иначе мощность паяльника значительно упадет. т.е. можно обойтись после трансформатора просто выпрямителем с конденсаторным фильтром)

    Второе.

    Я не заземлял жало. Предполагаю при пайке особо чувствительных элементов просто бросать провод с крокодилом на жало. Если вы часто паяете маломощные полевые транзисторы и другие элементы, особо чувствительные к пробою, то рекомендую заземление заложить сразу. Единственное по соображениям безопасности жало как и браслет следует заземлить через резистор более 100 кОм (рекомендуется через резистор 1МОм).

    Третье.

    Как говорится не все йогурты одинаково полезны.

    Второе жало купленное за $2.76 имеет заметные недостатки.

    Перечислю по возрастанию проблемы.

    1. При работе регулятора от жала слышны звуки, щелчки при включении циклов нагрева. Скорее всего при заливке нагревателя остались пустоты, как это скажется на долговечности не понятно.

    2. Термопара занижает показания. Если у вас такое жало будет использоваться вместе с нормальными придется проводить постоянно перекалибровку, смешение довольно большое около 100гр. А для аналоговой схемы регулировки перекалибровка представляет не тривиальную задачу.

    3. Самый главный недостаток. При протекании тока похоже нагревается холодный спай термопары, что нарушает нормальную работу регулятора.

    Привожу осциллограммы работы регулятора со старым жалом (стоило оно около 4$) и нового.

    Со старым жалом регулятор нормально функционирует, цикл нагрева и длинная пауза пока набранная температура не упадет до пороговой.

    Жало за 2.76$ кардинально отличается в поведении. Как я предполагаю происходит нагрев холодного спая током протекающим во время разогрева. И после цикла нагрева при измерении температуры происходит ошибка и схема снова уходит в нагрев, пока температура горячей части не превысит температуру на которую нагрелся холодный спай протекающим током. После пачки циклов нагрева порог все таки превышается и регулятор уходит в длинную паузу. Холодный спай быстро остывает (менее 100мс) и температура меряется близко к правильной. В итоге фактически удлиняется цикл нагрева и мы получаем колебания температуры жала, для относительно массивного жала на конце они оказались на уровне нескольких градусов, что не фатально влияет на работу. Как подобные жала будут работать с ПИД регуляторами затрудняюсь сказать, но думаю результаты будут более плачевные и добиться устойчивой работы регулятора не получится.

    Основной блок

    Паяльная станция построена на базе блока питания АТХ с 12см вентилятором. Взял для переделки вот такого махрового китайца. Заявленная мощность совершенно не соответствует начинке, реально блок ватт на 200. Но для наших целей вполне сойдет потребление в пике двух паяльников не превысит 140 Вт.

    С верху разместил два регулятора температуры, отдельно для каждого паяльника. И три выключателя позволяющие раздельно включать каждый паяльник и внешнюю нагрузку 24в. Общее включение блока оставил на штатном выключателе блока АТХ. Кабель питания также подключается к штатному разъему. Дополнительно вывел разъемы питания 24в и колодку USB для подключения нагрузки 5в.

    12см вентилятор помимо обдува блока, использую для вытяжки дыма. Для увеличения воздушного потока помимо вентилятора внутри корпуса установлен еще один вентилятор на наружной стороне. Желательно использовать вентиляторы мощностью более 4Вт. Мне попался вентилятор 12см 220В 8Вт который я использовал как внешний. Для питания вентилятора 12в используется линейный стабилизатор КРЕН8Б установленный через изолирующую прокладку на радиатор низковольтных диодов. Он понижает напряжение 24В до 12, одновременно он вместе с вентилятором служит нагрузкой блока питания на холостом ходу. При использовании 2 мощных вентиляторов 12В желательно использовать импульсный понижающий стабилизатор (стоимость готовой платы на ток около 2А на али около 1$). В крайнем случае, при использовании линейного стабилизатора установите его на отдельный радиатор. На внешний вентилятор спереди закреплена решетка от вентилятора блока питания, по верх которой размешен воздушный фильтр. Использовал кусок фильтра от кухонной вытяжки, он в составе волокна имеет отсорбент. Можно также поискать и чисто угольные фильтры, мне к сожалению пока не попался подходящих размеров.

    Подробно останавливаться на переделке блока АТХ не буду поскольку доработка зависит от модели блока питания. Мой блок был построен на базе микросхемы 3845. Я убрал все все элементы не 12в каналов и все элементы штатных фильтров и конденсаторов вторичного питания. Распаял новый фильтр используя более высоковольтные конденсаторы. Мне повезло, что в максимуме блок выдавал 29в, и для получения 24в пришлось только подобрать сопротивление резисторов в цепи стабилизации, и заблокировать цепи защиты по напряжению.

    На задней решётке видны клеммы 24 в и планка с USB взятая от старого корпуса. Отверстия проделывал просто выкусывая элементы решётки.

    Конструкция паяльников

    Конструкцию рассматривал и в предыдущей статье. Сейчас повторно и более подробно покажу этапы изготовления.

    Подключения проводов на скрутке и термоусадках.

    А также относительно прошлого раза несколько изменил склейку бумаги. Я в этот раз увеличение площади слоев сделал постепенной, что облегчило склейку.

    Сверху обжал термоусадку.

    Сзади для увеличения жесткости залил клеем.

    Ручка паяльника получается легкая 26 гр. Расстояние от жала не большое всего 4.5 см.

    Такую конструкцию можно использовать как минимум для второго паяльника, например сделав его на основе жала T12-K или T12-KF, которые удобны для выпаивания компонентов и микросхем.

    Также в сети встречал такой вариант: человек припаивали провода к контактам, а ручку делал из дерева.

    Схема регулятора температуры

    В этот раз сделал схему на основе LM324. (схема на основе LM358 приведена в прошлый раз).

    Китайский вариант схемы взятый за основу должен быть тоже работоспособным, единственное надо параллельно конденсатору С4 поставить защитный диод типа 1N4148, как в схеме на LM358, и полевой транзистор должен иметь разрешённое напряжение по затвору более 25 в.

    Основное отличие этой схемы, от схемы на LM358, это то что напряжение с термопары сначала усиливается, а лишь затем подается на компаратор. Моя схема представляет компиляцию предыдущего устройства на LM358 и китайской схемы на LM324.

    Плату рисовал в Sprint-Layout версии 5. Переменный резистор ВСП4-1 0.5вт, СМД резисторы и керамические конденсаторы типоразмера 0805, кроме R3 размера 2512 и R8 размера 1206, конденсатор С7 типо размера В. Разводка платы не идеально но мне нужно было что бы по размерам и посадке она совпадала с предыдущей платой. Диод D3 служит для зашиты от неправильного включения и в принципе он не нужен если плата не используется автономно, но я в процессе отладки умудрился включить плату неправильно по полярности в итоге через несколько секунд рванул конденсатор С5, а остальная плата осталась цела. Резистор R3 можно заменить просто перемычкой. Резисторы R1 и R2 вместе с подстроечным резистором определяют диапазон регулировки температуры, к сожалению разброс дрейфа нуля операционного усилителя не позволяет точно подобрать номиналы этих резисторов. У меня диапазон регулировки настроен от 200 до 400 градусов.

    Плату делал на двух стороннем текстолите одна из сторон используется под землю. В контакты обозначенные на схеме как с металлизацией впаиваются перемычки остальные зенкуются. Но плату можно сделать и используя односторонний текстолит, тогда со всех точек обозначенных металлизацией бросаются перемычки проводами на точку расположенную рядом с отрицательным выводом электролита С5 (желательно внести изменения в плату добавив там дополнительных площадок). Я обрезаю плату до нужного размера после травления сверловки и лужения, поскольку на краях где резал ножницами фольга деформированна и плохо зачищается.

    После распайки СМД деталей отмыл плату, а уже затем распаял переменный и подстроечный резистор, а также ДИП детали с проводами. Это позволяет при пайке СМД меньше ограничиваться в выборе флюсов.

    Остальные детали и провода паяю используя спиртоканифоль или последнее время чаще безотмывочный флюс. (Из за проблем с жалом во время отладки и пока не понял причин немного замучил плату перепайками.)

    В целом схема на LM324 немного лучше работает чем на LM358, хотя при пайке различия не особо заметны. Схема на LM358 при подходе к температуре стабилизации примерно на секунду частит светодиодом, т.е. подход происходит плавно с падением мощности отдаваемым в нагреватель вблизи температуры стабилизации. Схема на LM324 выходит на режим стабилизации более резко почти сразу переходя на медленное мигание светодиодом. Какую схему выбрать для реализации скорее должно определятся какие детали под рукой, как я говорил при пайке особой разницы я не заметил, хоть схема на LM324 и ведет себя лучше.

    Или что хотел сделать и пока не реализовал, как говорится, в мире нет ничего более постоянного чем сделанное временно.

    Подумываю поставить разъемы для паяльников. Чтобы можно было сделать еще паяльников под другие жала и в случае необходимости менять подключенные паяльники. Сейчас на корпусе есть два мини джека, но я опасаюсь их использовать для тока в три ампера.

    Поставит предохранитель на внешние разъемы 24в и возможно также для USB выходов.

    Ну и надо искать, чем заменить старый фильтр вытяжки, а то он уже грязный, и воздух проходит с трудом.

    Также хорошо бы сделать какую то новую подставку под оба паяльника.

    На вентилятор необходимо установить небольшой козырек, что бы направлять потоки воздуха и улучшить всасывание дыма.

    Как продолжения идеи козырька подумываю туда же прикрепить увеличительное стекло с подсветкой, но это совсем из далеких планов.

    Делаем паяльную станцию своими руками

    Как начинающие радиомастера, так и те, кто изрядно поднаторел в этом деле, при пайке радиоэлектронных элементов сталкиваются с некоторыми трудностями. Купленный в магазине недорогой паяльник может «порадовать» перегревом, из-за которого на жале образовывается нагар, что ведет к неполноценному контакту с оловом на плате, также перегревается плата и отслаиваются дорожки. В этой статье напишем, как сделать самодельную паяльную станцию с феном своими руками, предоставив схемы сборки, видео и фотографии.

    • Изготовление контактного паяльника
    • Воздушный паяльник
    • Общие характеристики и принцип работы
    • Рекомендации по сборке
    • Техника безопасности и правила использования

    Изготовление контактного паяльника

    Данный вариант может считаться наиболее простым и дешевым. Эта конструкция регулирует на паяльнике напряжение, изменяя температуру нагрева жала. Опытным путем определяется производительность нагревателя и положение регулятора.

    Процесс пайки можно настроить в соответствии с вашими потребностями и под определенный момент производства. Регулятором напряжения может выступать диммер для люстры. Единственный минус этой идеи – малый диапазон возможных температур на выходе. То есть для пайки лучше бы сделать диапазон напряжений – 200-220 В, а не 0-max. Скорее всего, понадобится доработать схему, добавить к основному резистору резистор «тонкой настройки».

    Схема сборки в домашних условиях

    Выпрямительный мост в этой схеме позволит поднять напряжение со 220 В на входе до 310 В на выходе. Данный вариант актуален для домашних мастеров, в доме которых низкое электрическое напряжение, что не позволяет паяльнику нагреваться до рабочей температуры. При отсутствии диммера его можно сделать самостоятельно.

    Воздушный паяльник

    Иногда при пайке нужно заменить SMD элементы, и паяльник с жалом для этого слишком велик. С этой целью применяется воздушное устройство, чей принцип работы аналогичен принципу работы обычного фена: поток воздуха подается принудительно через разогретый элемент к месту пайки, бесконтактно и равномерно разогревая припой.

    Воздушный паяльник можно сделать из рабочего старого прибора – вместо жала вставить трубку от антенны, соответствующую старому жалу по размеру. Сделать паяльник так герметичным. Принудительную подачу воздуха обеспечивает аквариумный компрессор, через трубки для капельниц.

    Для регулировки температуры воздушного потока можно использовать регулятор напряжения. Наилучший вариант при отсутствии лишнего рабочего паяльника – взять нерабочий инструмент, перемотать под напряжение 8-12 В. Данный способ предпочтителен с точки зрения электрической безопасности. Нихромом для нагревателя здесь может выступать кусок провода, спирали от электроплитки 0,8 мм, который намотан без нахлестов около 30 витков вместо старой. Мощность трансформатора должна быть не меньше 150 Вт.

    Более затратным методом регулирования температуры на жале паяльника является поддержание температуры на жале. С этой целью дополнительно устанавливается термопара. Совмещение описанных самоделок позволит сделать универсальную паяльную станцию. Устройство будет иметь регулятор напряжения, с помощью которого регулируется вход на трансформаторе, что изменяет мощность нагревателя.

    Когда нужно выпаять большую микросхему, и ее для этого нужно хорошенько и равномерно прогреть, рекомендуется работать самодельным термическим феном с регулятором температуры. Еще можно изготовить инфракрасную паяльную станцию, для чего нужны:

    • спираль нихрома;
    • керамический патрон для лампы.

    Нихром подключен к понижающему трансформатору. Контроль температуры на поверхности деталей осуществляется терморегулятором.

    Общие характеристики и принцип работы

    В схему паяльной станции с феном входит блок и манипулятор-термофен, где нагревается воздух. Устройства используются для ремонта сотовых телефонов и бытовой техники. Способы формирования потока воздуха такие:

    • Турбинные – воздух подается маленьким крыльчатым электромотором в термофене.
    • Компрессорные – воздух подается компрессором, расположенным в главном блоке.

    Главным образом компрессорные станции отличаются от турбинных тем, что последние могут сформировать больший воздушный поток, но недостаточно проталкивают воздух через узкие отверстия. Компрессорные же станции более эффективны, когда воздух должен пройти через узкие насадки, используемые для пайки в труднодоступных местах.

    Принцип работы станции: поток воздуха проходит через спиралевидный или керамический нагреватель в трубке термического фена, нагревается до требуемой температуры и через специальные насадки выходит на обрабатываемую деталь. Термофен способен обеспечить температуру воздуха 100-800°C. В современных станциях температура, мощность и направление воздушного потока легко регулируются.

    В сравнении с прочими станциями (в частности, инфракрасными), недостатки термовоздушных станций следующие:

    • Поток воздуха может сдуть мелкие детали.
    • Неравномерный прогрев поверхности.
    • Требуются дополнительные насадки.

    Преимуществом же является то, что турбовоздушные станции гораздо дешевле других.

    Рекомендации по сборке

    В домашних условиях проще и дешевле сделать станцию с феном на вентиляторе, где роль нагревателя играет спираль. Керамический нагреватель стоит дорого, а в случае резких изменений температуры может потрескаться. Компрессор сложно сконструировать самостоятельно, и его нельзя присоединить к фену, поэтому от главного блока придется проводить трубу для воздуха, что добавляет неудобств.

    Нагнетателем послужит малогабаритный вентилятор (подойдет кулер от блока питания компьютера) возле ручки термического фена. К нему присоединяется трубка, в которой воздух нагревается и выходит на паяемый элемент. На торце кулера вырезается отверстие, через которое в трубку с нагревателем попадает воздух. С одной стороны кулер плотно закрывается, чтобы воздух во время работы шел лишь в трубку, а не выходил наружу. Нагнетатель монтируется в задней части фена.

    Нагреватель собрать гораздо труднее. Нихромовая проволока спиралью накручивается на основание. Витки соприкасаться друг с другом не должны. Длина спирали рассчитывается из расчета того, что ее сопротивление должно равняться 70-90 Ом. Основанием может служить основание с низкой теплопроводностью и большой стойкостью к высоким температурам.

    При конструировании фена много разных деталей могут быть взяты из старых домашних фенов. В каждом, даже простом и дешевом, устройстве есть слюдяные пластины, из которых для спирали собирается крестообразное основание. Также используются основания старых паяльников либо галогенных ламп для прожекторов. Основание на 5-7 см должно быть не занятым спиралью. От спирали по основанию отводятся концы. Затем эта часть плотно обматывается жаропрочной тканью.

    Далее, из фарфора, керамики и подобных материалов делается трубка. Диаметр рассчитывается так, чтобы между ее внутренними стенками и спиралью оставался маленький зазор. Сверху на сопло наклеиваются термоизоляционные материалы:

    • стекловолокно;
    • асбест;
    • прочее.

    Изоляция обеспечит больший КПД фена и позволит спокойно брать его руками.

    Нагревательный элемент и трубка-сопло по отдельности соединяются с нагнетателем таким образом, чтобы воздух шел в сопло, а нагреватель находился внутри сопла посередине. Место скрепления сопла и нагнетателя изолируется во избежание пропускания воздуха.

    По форме получившаяся конструкция напоминает пистолет. Для удобства к корпусу можно прикрепить держатели и ручки. Специальные насадки покупаются или вытачиваются из термостойкого металла. От изготовленного фена к главному блоку должны отходить четыре провода и выходить из задней части фена. Их рекомендуется собрать вместе и изолировать повторно.

    В корпусе блока размещаются два реостата, один из которых регулирует мощность потока воздуха, а другой – мощность нагревательного элемента. Лучше, если выключатель для нагревателя и нагнетателя будет общим. Завершающее действие – устройство выхода для розетки.

    Техника безопасности и правила использования

    • На рабочем месте важно соблюдать технику пожарной безопасности.
    • В процессе работы постарайтесь не допустить резкого изменения температуры нагревателя. Не трогайте нагревательный элемент и насадки фена.
    • Насадки меняйте после выключения и остывания фена.
    • Не допускайте попадания на термофен жидкости.
    • Обеспечьте хорошее проветривание рабочего места.

    Паяльная станция-фен – довольно удобное приспособление, которое можно собрать самостоятельно. Несмотря на имеющиеся недостатки, это вполне пригодное устройство для ремонта бытовой техники.

    Simple Solder MK936. Простая самодельная паяльная станция своими руками

    В интернете очень много схем различных паяльных станций, но у всех есть свои особенности. Одни сложны для новичков, другие работают с редкими паяльниками, третьи не закончены и т.д. Мы сделали упор именно на простоту, низкую стоимость и функциональность, чтобы каждый начинающий радиолюбитель смог собрать такую паяльную станцию .
    Обратите внимание, что у нас также есть версия этого устройства на SMD-компонентах!

    Для чего нужна паяльная станция

    Обычный паяльник, который включается напрямую в сеть просто греет постоянно с одинаковой мощностью. Из-за этого он очень долго разогревается и никакой возможности регулировать температуру в нем нет. Можно диммировать эту мощность, но добиться стабильной температуры и повторяемости пайки будет очень сложно.
    Паяльник, подготовленный для паяльной станции имеет встроенный датчик температуры и это позволяет при разогреве подавать на него максимальную мощность, а затем удерживать температуру по датчику. Если просто пытаться регулировать мощность пропорционально разности температур, то он будет либо очень медленно разогреваться, либо температура будет циклически плавать. В итоге программа управления обязательно должна содержать алгоритм ПИД-регулирования.
    В своей паяльной станции мы, конечно, использовали специальный паяльник и уделили максимум внимания стабильности температуры.

    Паяльная станция Simple Solder MK936

    Технические характеристики

    1. Питание от источника постоянного напряжения 12-24В
    2. Потребляемая мощность, при питании 24В: 50Вт
    3. Сопротивление паяльника: 12Ом
    4. Время выхода на рабочий режим: 1-2 минуты в зависимости от питающего напряжения
    5. Предельное отклонение температуры в режиме стабилизации, не более 5ти градусов
    6. Алгоритм регулирования: ПИД
    7. Отображение температуры на семисегментном индикаторе
    8. Тип нагревателя: нихромовый
    9. Тип датчика температуры: термопара
    10. Возможность калибровки температуры
    11. Установка температуры при помощи экодера
    12. Светодиод для отображения состояния паяльника (нагрев/работа)

    Принципиальная схема

    Схема предельно простая. В основе всего микроконтроллер Atmega8. Сигнал с оптопары подается на операционный усилитель с регулируемым коэффициентом усиления (для калибровки) и затем на вход АЦП микроконтроллера. Для отображения температуры использован семисегментный индикатор с общим катодом, разряды которого включены через транзисторы. При вращении ручки энкодера BQ1 задается температура, а в остальное время отображается текущая температура. При включении задается начальное значение 280 градусов. Определяя разницу между текущей и требуемой температурой, пересчитав коэффициенты ПИД-составляющих, микроконтроллер при помощи ШИМ-модуляции разогревает паяльник.
    Для питания логической части схемы использован простой линейный стабилизатор DA1 на 5В.

    Принципиальная схема Simple Solder MK936

    Печатная плата

    Печатная плата односторонняя с четырьмя перемычками. Файл печатной платы можно будет скачать в конце статьи.

    Печатная плата. Лицевая сторона

    Печатная плата. Обратная сторона

    Список компонентов

    Для сборки печатной платы и корпуса потребуются следующие компоненты и материалы:

    1. BQ1. Энкодер EC12E24204A8
    2. C1. Конденсатор электролитический 35В, 10мкФ
    3. C2, C4-C9. Конденсаторы керамические X7R, 0.1мкФ, 10%, 50В
    4. C3. Конденсатор электролитический 10В, 47мкФ
    5. DD1. Микроконтроллер ATmega8A-PU в корпусе DIP-28
    6. DA1. CСтабилизатор L7805CV на 5В в корпусе TO-220
    7. DA2. Операционный усилитель LM358DT в корпусе DIP-8
    8. HG1. Семисегментный трехразрядный индикатор с общим катодом BC56-12GWA.Также на плате предусмотрено посадочное место под дешевый аналог.
    9. HL1. Любой индикаторный светодиод на ток 20мА с шагом выводов 2,54мм
    10. R2,R7. Резисторы 300 Ом, 0,125Вт — 2шт
    11. R6, R8-R20. Резисторы 1кОм, 0,125Вт — 13шт
    12. R3. Резистор 10кОм, 0,125Вт
    13. R5. Резистор 100кОм, 0,125Вт
    14. R1. Резистор 1МОм, 0,125Вт
    15. R4. Резистор подстроечный 3296W 100кОм
    16. VT1. Полевой транзистор IRF3205PBF в корпусе TO-220
    17. VT2-VT4. Транзисторы BC547BTA в корпусе TO-92 — 3шт
    18. XS1. Клемма на два контакта с шагом выводов 5,08мм
    19. Клемма на два контакта с шагом выводов 3,81мм
    20. Клемма на три контакта с шагом выводов 3,81мм
    21. Радиатор для стабилизатора FK301
    22. Колодка для корпуса DIP-28
    23. Колодка для корпуса DIP-8
    24. Разъем для подключения паяльника
    25. Выключатель питания SWR-45 B-W(13-KN1-1)
    26. Паяльник. О нем мы еще позже напишем
    27. Детали из оргстекла для корпуса (файлы для резки в конце статьи)
    28. Ручка энкодера. Можно купить ее, а можно напечатать на 3D-принтере. Файл для скачивания модели в конце статьи
    29. Винт М3х10 — 2шт
    30. Винт М3х14 — 4шт
    31. Винт М3х30 — 4шт
    32. Гайка М3 — 2шт
    33. Гайка М3 квадратная — 8шт
    34. Шайба М3 — 8шт
    35. Шайба М3 гроверная — 8шт
    36. Также для сборки потребуются монтажные провода, стяжки и термоусадочная трубка

    Вот так выглядит комплект всех деталей:

    Комплект деталей для сборки паяльной станции Simple Solder MK936

    Монтаж печатной платы

    При сборке печатной платы удобно пользоваться сборочным чертежом:

    Сборочный чертеж печатной платы паяльной станции Simple Solder MK936

    Подробно процесс монтажа будет показан и прокомментирован в видео ниже. Отметим только несколько моментов. Необходимо соблюдать полярность электролитических конденсаторов,светодиода и направление установки микросхем. Микросхемы не устанавливать до тех пор, пока корпус полностью не собран и не проверено питающее напряжение. С микросхемами и транзисторами необходимо обращаться аккуратно, чтобы не повредить их статическим электричеством.
    После того, как плата собрана, она должна выглядеть вот так:

    Печатная плата паяльной станции в сборе

    Сборка корпуса и объемный монтаж

    Монтажная схема блока выглядит следующим образом:

    Монтажная схема паяльной станции

    То есть осталось всего навсего подвести к плате питание и подключить разъем паяльника.
    К разъему паяльника требуется припаять пять проводов. К первому и пятому красные, к остальным черные. На контакты надо сразу надеть термоусадочную трубку, а свободные концы проводов залудить.
    К выключателю питания следует припаять короткий (от переключателя к плате) и длинный (от переключателя к источнику питания) красные провода.
    Затем выключатель и разъем можно установить на лицевую панель. Обратите внимание, что выключатель может входить очень туго. При необходимости доработайте лицевую панель надфилем!

    Подключение разъема паяльника

    Далее необходимо скрутить винтами левую и заднюю стенки корпуса. Помните, что оргстекло — хрупкий материал, и не перетягивайте резьбовые соединения!

    Сборка корпуса паяльной станции

    На следующем этапе все эти части собираются вместе. Устанавливать контроллер, операционный усилитель и прикручивать лицевую панель не нужно!

    Сборка корпуса паяльной станции

    Прошивка контроллера и настройка

    HEX-файл для прошивки контроллера вы сможете найти в конце статьи. Фьюз-биты должны остаться заводскими, то есть контроллер будет работать на частоте 1МГц от внутреннего генератора.
    Первое включение следует производить до установки микроконтроллера и операционного усилителя на плату. Подайте постоянное напряжение питания от 12 до 24В (красный должен быть “+”, черный “-“) на схему и проконтролируйте, что между выводами 2 и 3 стабилизатора DA1 присутствует напряжение питания 5В (средний и правый выводы). После этого отключите питание и установите микросхемы DA1 и DD1 в панельки. При этом следите за положением ключа микросхем.
    Снова включите паяльную станцию и убедитесь, что все функции работают правильно. На индикаторе отображается температура, энкодер ее изменяет, паяльник нагревается, а светодиод сигнализирует о режиме работы.
    Далее необходимо откалибровать паяльную станцию.
    Оптимальный вариант при калибровке – использование дополнительной термопары. Необходимо выставить требуемую температуру и проконтролировать ее на жале по эталонному прибору. Если показания различаются, то произведите подстройку многооборотным подстроечным резистором R4.
    При настройке помните, что показания индикатора могут отличаться незначительно от фактической температуры. То есть, если вы установили, например, температуру “280”, а показания индикатора в небольшой степени отклоняются, то по эталонному прибору вам нужно добиваться именно температуры 280°С.
    Если под рукой нет контрольного измерительного прибора, то можно установить сопротивление резистора около 90кОм и потом подбирать температуру опытным путем.
    После того, как паяльная станция проверена, можно аккуратно, чтобы не потрескались детали, установить лицевую панель.

    Паяльная станция в сборе

    Паяльная станция в сборе

    Видео работы

    Мы сняли краткое видео-обзор

    …. и подробное видео, на котором показан процесс сборки:

    Заключение

    Это простая паяльная станция сильно изменит ваше впечатление о пайке, если вы паяли до этого обычным сетевым паяльником. Вот так она выглядит, когда сборка завершена.
    О паяльнике надо сказать еще пару слов. Это самый простой паяльник с датчиком температуры. У него обычный нихромовый нагреватель и самое дешевое жало. Мы рекомендуем вам сразу приобрести для него сменное жало. Подойдет любое с внешним диаметром 6,5мм, внутренним 4мм, и длиной хвостовика 25мм.

    Паяльник в разобранном виде с запасным жалом

    Файлы для скачивания

    Выложенные выше файлы устарели. В текущей версии мы обновили чертежи для резки оргстекла, изготовления печатной платы, а также обновили прошивку, чтобы убрать мерцание индикатора. Обратите внимание, что для новой версии прошивки требуется включить CKSEL0, CKSEL2, CKSEL3, SUT0, BOOTSZ0, BOOTSZ1 и SPIEN (то есть изменить стандартные настройки).
    Печатная плата в формате Sprint Layout V1.1
    Прошивка для микроконтроллера V1.1
    Файл для резки оргстекла V1.1

    Металлический корпус своими руками, самый простой способ. Инфракрасная паяльная станция

    Описание процесса ИК пайки

    Принцип работы инфракрасной паяльной станции заключается в воздействии сильными волнами длиной 2-7 мкм на элемент. Устройство для пайки самодельными ИК паяльными станциями как самодельными, так и приобретаемыми, состоит из нескольких элементов:

    • Нижний нагреватель.
    • Верхний нагреватель, отвечающий за основное воздействие на материалы.
    • Конструкция держателя платы, размещенная на столе.
    • Контроллер температуры, состоящий из программируемого элемента и термопары.

    Длина волны, напрямую зависит от температурных показателей источника энергии. Материалы в различной форме подвергаются пайке с помощью ИК станции, сделанной своими руками, существуют основные параметры передачи энергии, непрозрачность, отражение, полупрозрачность и прозрачность. Перед изготовлением ИК паяльной станции своими руками нужно понимать, что существуют некоторые недостатки данных систем:

    • Разная степень поглощения энергии компонентами ведет за собой неравномерный прогрев.
    • Каждая плата ввиду различных характеристик требует подбора температур, в противном случае, компоненты перегреваются, выходят из строя.
    • Наличие «мертвой зоны», где инфракрасная энергия не достигает требуемого объекта.
    • Обязательное условие защиты поверхностей остальных элементов от испарения флюсов.

    Нагревание происходит за счет передачи тепла к монтажной плате. Тепловое воздействие инфракрасной станцией происходит поверх детали, температуры бывает не достаточно, поэтому конструкция подразумевает нагрев нижней части. Нижняя часть состоит из термостола, процесс пайки может осуществляться посредством спокойного инфракрасного излучения, либо потоком воздуха.



    Инфракрасная паяльная станция своими руками

    Профессиональное оборудование стоит достаточно дорого, более дешевые аналоги не обладают достаточным функционалом. Для экономии средств, выполнения нужных операций с BGA контроллерами, возможно изготовить инфракрасную паяльную станцию своими руками. Сборка возможна из доступных на рынке и подручных материалов. Конструкция представляет собой изготовленный из старого светильника термостол, оснащенный лампами галогенового типа. Контроллер и верхний нагреватель приобретается на рынке или собирается из старых запасных частей.

    Инструменты для изготовления инфракрасного паяльника

    Термостол потребует наличие отражателей, галогеновых ламп, размещенных в корпусе из профиля или листового металла. При изготовлении инфракрасной паяльной станции своими руками, стоит придерживаться чертежей, которые возможно разработать самостоятельно или позаимствовать у других исполнителей. Обязательно корпус снабжается местом для термопары, которая передает информацию на контролер для предотвращения резких перепадов температуры, избыточного нагрева материала.

    Сборка ИК паяльной станции подразумевает самодельные конструкции в виде крепежа из штатива. Контроль температуры нагревательного узла производится второй термопарой. Устанавливается параллельно с нагревателем, штатив закрепляется на панели таким способом, чтобы ИК элемент можно было перемещать над поверхностью термостола. Расположение платы производится выше галогеновых ламп на 2-3 см, в корпусе термостола. Крепление производится кронштейнами, для изготовления возможно использовать ненужный алюминиевый профиль.

    Принципиальная схема контроллера для инфракрасной паяльной станции своими руками

    Изготовление паяльной лампы своими руками в первую очередь потребует корпус. Для охлаждения системы требуется монтаж одного мощного или нескольких кулеров, материал желательно выбрать из оцинкованной стали. После полной сборки производится наладка системы путем запуска схемы, отладки устройства.

    Нижний подогрев

    Нижний подогрев может быть изготовлен несколькими способами, но гораздо лучшим вариантом является использование галогеновых ламп. Рациональным решением является установка своими руками ламп суммарной мощностью от 1 кВт. По бокам конструкции устанавливаются порожки, которые зафиксируют плату. Установка материалов для пайки производится на швеллер, для более мелких деталей используются подложки или прищепки.

    Верхний подогрев

    Известно, что верхний нагреватель подходящего качества невозможно изготовить своими руками. Для достижения наилучшего результата в процессе ИК пайки, необходимо воспользоваться керамическими нагревательными элементами. Для инфракрасной паяльной станции, изготовленной своими руками оптимальным вариантом является использование нагревателя ELSTEIN. Производитель показывает наилучшие результаты, спектр излучения идеально подходит для замены BGA плат, других деталей. Не рекомендуется экономить на покупке верхнего нагревателя — обогревателя при сборке паяльной станции своими руками, т.к. при работе некачественным инструментом возможно повреждение платы или собранной конструкции.

    Конструкция для верхнего подогрева возможна из самодельной станины. Достаточно иметь регулировку по высоте и широте для комфортной работы на инфракрасной паяльной станции, изготовленной своими руками. К штативу крепится термопара для контроля температуры.

    Блок управления

    Корпус контроллера подбирается по размерам в соответствие с устанавливаемыми деталями. Подходящим вариантом может оказаться кусок листового метала, который без труда возможно отрезать ножницами по металлу. Размещается в блоке управления также вентиляторы, различные кнопки, а также дисплей и сам контроллер. В роли контроллера выступает Arduino, функциональность вполне достаточна для выполнения пайки BGA схем своими руками.

    Детали для самодельного прибора

    Перед сборкой любого оборудования своими руками, необходимо подготовить материалы и инструменты. Для инфракрасного паяльника понадобятся:

    • Комплект галогеновых ламп, количество которых зависит от формы будущего нижнего нагревателя паяльной станции, оптимальное количество подбирается в диапазоне от 4 до 6 штук.
    • Керамическая инфракрасная головка мощностью не менее 400 ватт для верхнего нагревателя.
    • Шланг от душевой лейки для проводов, алюминиевые уголки.
    • Стальная проволока, крепежный элемент от старого фотоаппарата или настольной лампы для изготовления штатива.
    • Контроллер Arduino, 2 реле и термопары, а также блок питания выходом 5 вольт, который можно изготовить от зарядного устройства мобильного телефона.
    • Винты, разъемы и дополнительные периферии.

    Инфракрасная паяльная станция своими руками на основе Arduino

    В процессе сборки понадобятся чертежи, разобрать которые помогут элементарные знания в электронике.

    Общие характеристики и принцип работы паяльной станции


    Внешний вид промышленной воздушной паяльной станции: 1 – блок управления, 2 − паяльник, 3 – фен, 4 − ручка для переноски, 5 – регуляторы температуры для фена и нагревателя
    Анатомия паяльной станции достаточно проста и максимально отвечает необходимым условиям: аккуратная, «умная» пайка элементов. Сердце прибора − блок питания, внутри которого находится трансформатор, выдающий напряжение двух вариантов 12 или 24 Вольта. Без этого элемента все системы станции были бы бесполезны. Трансформатор отвечает за регулировку температуры. Блок питания снабжён терморегулятором и специальными кнопками запуска прибора.

    Для справки! Некоторые устройства оборудованы специальной подставкой, которая нагревает печатную плату во время пайки, что помогает избежать её деформации.

    С помощью блока управления также может быть реализована функция запоминания температуры и программирования кнопок. Мастера «прокачивают» прибор, используя процессор, благодаря которому появляется возможность измерять температуру в ходе пайки.


    Вариация самодельного паяльника для микросхем

    Разберём особенности работы термовоздушной паяльной станции: поток воздуха с помощью специальных спиралевидных или керамических элементов (они находятся прямо внутри трубки термофена) нагревается, а затем через специальные насадки направляется в точку пайки. Такая система позволяет нагреть необходимую поверхность равномерно, исключив точечную деформацию.

    Читайте также:  Покраска деревянного дома внутри: пошаговая подготовка и покраска деревянных стен внутри дома
  • Ссылка на основную публикацию